
TRITERPENE GLYCOSIDES OF *Fatsia japonica*. IV. STRUCTURE OF GLYCOSIDES D₁ AND D₂ FROM SEEDS

E. A. Sobolev,¹ V. V. Kachala,² V. I. Grishkovets,¹ A. S. Shashkov,² and V. Ya. Chirva¹

Seeds of Fatsia japonica (Araliaceae) afforded the known hederagenin 3-O- β -D-glucopyranosyl-(1-2)-O- α -Larabinopyranoside and the new triterpene glycoside D_2 , for which the structure hederagenin 3-O- β -Dgalactopyranosyl-(1-2)-O- α -L-arabinopyranoside was proposed based on chemical methods and NMR spectroscopy.

Key words: Fatsia japonica, Araliaceae, triterpene glycosides, hederagenin glycosides.

We report results on isolation of glycosides D_1 and D_2 from fraction D obtained from seeds of *Fatsia japonica* [1] and determination of their structures. Fraction D was rechromatographed over highly effective microspherical silica gel Silpearl. Chromatographically pure glycosides D_1 , D_2 , and D_3 were obtained. According to preliminary ¹H and ¹³C NMR spectra of signals for the anomeric C atoms and protons, glycosides D_1 and D_2 were pure compounds whereas D_3 was a chromatographically inseparable mixture of two triterpene glycosides.

1: $\mathbf{R} = \beta$ -D-Glcp''-(1 \rightarrow 2)-O- α -L-Ara $p' \rightarrow$ 2: $\mathbf{R} = \beta$ -D-Galp''-(1 \rightarrow 2)-O- α -L-Ara $p' \rightarrow$

Glycoside D_1 (1) was identified as hederagenin 3-O- β -D-glucopyranosyl-(1-2)-O- α -L-arabinopyranoside by comparing its chromatographic mobility with that of a known sample that we isolated previously from leaves of *F. japonica* [2]. Acid hydrolysis confirmed the composition of D_1 . Alkaline hydrolysis and methylation with diazomethane revealed the site of attachment of the carbohydrate chain. The ¹³C NMR spectrum of 1 is identical to that of glycoside F from leaves of *F. japonica* [2], which confirms the proposed structure. Additional confirmation of the structure, in particular the 1- α both between the monosaccharides, was obtained by complete assignment of PMR signals for the carbohydrate based on the two-dimensional (2D) COSY spectrum and unambiguous assignment of ¹³C NMR signals for the carbohydrate based on the 2D HSQC spectrum (Table 1). A positive α -effect on C-2 of arabinose from the 1- α bond and cross-peaks between glucose H-1 and arabinose H-2 and between arabinose H-1 and aglycone H-3 in the ROESY spectrum are observed, as expected. ¹³C NMR signals for the aglycone of 1 were assigned by comparison with previous results [2] and other literature data for 3-substituted hederagenin [3] and are listed in Table 2.

¹⁾ V. I. Vernadskii Tavricheskii National University, 95007, Simferopol', ul. Yaltinskaya, 4, e-mail: sobolevevg@mail.ru; 2) N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, 117913, Moscow, B-334, Leninskii pr., 47. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 221-222, May-June, 2001. Original article submitted June 20, 2001.

Atom	1			2	
	¹³ C	$^{1}\mathrm{H}$	Atom	¹³ C	1 H
Ara'			Ara'		
1	103.9	5.17	1	103.8	5.14
2	80.6	4.57	2	81.0	4.55
3	73.5	4.28	3	73.5	4.25
4	68.3	4.32	4	68.3	4.30
5	65.0	4.25; 3.70	5	64.3	4.22; 3.64
Glc''			Gal''		
1	105.4	5.18	1	106.2	5.05
2	76.0	4.05	2	73.6	4.50
3	78.0	4.25	3	75.0	4.09
4	71.4	4.15	4	69.7	4.55
5	78.2	3.80	5	76.8	3.95
6	62.6	4.45; 4.28	6	61.6	4.42; 4.34

TABLE 1. Chemical Shifts of ¹³C and ¹H in Carbohydrates of Glycosides D_1 (1) and D_2 (2) (δ , ppm, 0 = TMS, C₅D₅N)

TABLE 2. Chemical Shifts of ¹³C in Aglycones of Glycosides D_1 (1) and D_2 (2) (δ , ppm, 0 = TMS, C₅D₅N)

C-atom	Compound			Compound	
	1	2	C-atom	1	2
1	38.7	38.7	16	23.7	23.7
2	25.9	25.8	17	46.7	46.7
3	82.2	81.9	18	42.0	42.0
4	43.5	43.4	19	46.5	46.5
5	47.5	47.5	20	30.9	30.9
6	18.1	18.1	21	34.2	34.2
7	32.8	32.8	22	33.2	33.2
8	39.7	39.7	23	64.9	64.6
9	48.1	48.1	24	13.4	13.5
10	36.9	36.9	25	16.0	16.0
11	23.8	23.8	26	17.5	17.5
12	122.5	122.5	27	26.2	26.2
13	144.9	144.9	28	180.5	180.5
14	42.2	42.2	29	33.3	33.3
15	28.3	28.3	30	23.8	23.8

The chromatographic mobility of glycoside D_2 (2) did not identify it as any of the glycosides from leaves or fruit pericarp of *F. japonica*. Total acid hydrolysis of 2 produced galactose, arabinose, and hederagenin. Alkaline hydrolysis and treatment with diazomethane in ether indicated that 2 is a monodesmoside glycoside with the carbohydrate chain on C-3 of the aglycone. Partial acid hydrolysis of 2 has produced galactose and hederagenin 3-O- α -L-arabinopyranoside, which defines the bonding sequence of the monosaccharides. The structure of 2 was further established using various NMR spectroscopy methods.

Two signals of anomeric C atoms were easily found in the ¹³C NMR of **2**; two doublets of anomeric protons in the PMR spectrum. This confirms that **2** is a bioside. Signals of the remaining skeletal protons of the monosaccharides were assigned based on TOCSY and COSY spectra. The splitting patterns and spin—spin coupling constants indicated that they were β -galactopyranose and α -arabinopyranose. Signals for C atoms of the carbohydrates were completely assigned based on the two-dimensional HSQC spectrum (Table 1). It was confirmed that the galactose is terminal (unsubstituted). Chemical shifts of its

C atoms agree well with literature data [4]. The arabinose is substituted on C-2 because this atom exhibits a positive α -effect compared with unsubstituted arabinose [2, 3]. The type of bond between monosaccharides was independently confirmed by analysis of ROESY and HMBC spectra. The cross-peaks between galactose H-1 and arabinose H-2 and between galactose H-1 and arabinose C-2 were unambiguously identified. Thus, the carbohydrate of **2** is a 3-O- β -D-galactopyranosyl-(1 \rightarrow 2)-O- α -L-arabinopyranosyl fragment. Chemical shifts of C atoms in the aglycone of **2** were assigned by analogy with **1** and are identical to 3-substituted hederagenin [2, 3]. Attachment of the carbohydrate chain at the C-3 hydroxyl also follows from the ROESY and HMBC spectra in which cross-peaks between arabinose H-1 and hederagenin H-3 and between arabinose H-1 and hederagenin C-3 were found. Therefore, **2** is hederagenin 3-O- β -D-galactopyranosyl-(1 \rightarrow 2)-O- α -L-arabinopyranoside and is a new triterpene glycoside.

It is interesting that seeds of *Hedera helix* and *H. taurica* contain exclusively glycosides with glucose bound directly to aglycone C-3 [5-8] whereas seeds of *F. japonica* contain also glycosides in which the aglycone is bound to arabinose, like in fruit pericarp [8].

EXPERIMENTAL

General comments on the hydrolysis methods and preparation of fraction D have been published [1].

Fraction D (160 mg) was separated over a Silpearl (200 g, Chemapol, Czech Rep.) silica-gel column with elution by water-saturated $CHCl_3$ — C_2H_5OH (7:3) to give glucosides D_1 (1, 40 mg), D_2 (2, 70 mg), and D_3 (50 mg). Acid hydrolysis of 1 gave glucose, arabinose, and hederagenin; of 2, galactose, arabinose, and hederagenin. Alkaline hydrolysis conditions have no effect on 1 and 2 (TLC monitoring using $CHCl_3$ — CH_3OH — H_2O , 100:30:5). Treatment of 1 and 2 with diazomethane in ether converted them to the methyl esters with greater chromatographic mobility (TLC monitoring). Tables 1 and 2 list chemical shifts in ¹H and ¹³C NMR spectra of 1 and 2.

REFERENCES

- 1. V. I. Grishkovets, E. A. Sobolev, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 131 (2000).
- 2. V. I. Grishkovets, E. A. Sobolev, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 395 (2000).
- 3. V. I. Grishkovets, D. Yu. Sidorov, L. A. Yakovishin, N. N. Arnautov, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 377 (1996).
- 4. V. D. Huan, S. Yamamura, K. Ohtani, R. Kasai, K. Yamasaki, N. T. Nham, and H. M. Chau, *Phytochemistry*, **47**, 451 (1998); T. Miyase, N. Sutoh, D. M. Zhang, and A. Ueno, *Phytochemistry*, **42**, 1123 (1996).
- 5. A. A. Loloiko, V. I. Grishkovets, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 721 (1988).
- 6. K. Hostettmann, *Helv. Chim. Acta*, **63**, 606 (1980).
- A. A. Loloiko, V. I. Grishkovets, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 228 (1990);
 V. I. Grishkovets, A. A. Loloiko, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 230 (1990);
 V. I. Grishkovets, A. A. Loloiko, A. S. Shashkov, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 779 (1990).
- 8. E. A. Sobolev, V. I. Grishkovets, A. S. Shashkov, N. V. Tolkacheva, and V. Ya. Chirva, *Khim. Prir. Soedin.*, 426 (2000).